Langchain
This guide will walk you through the process of implementing a Langchain model with Krypton ML. We'll create a simple text generation model using Langchain and deploy it using Krypton ML.
Step 1: Create the Langchain Model
First, let's create a simple Langchain model. Create a new file called langchain_model.py
in folder app
:
from langchain_ollama.llms import OllamaLLM
from langchain.prompts import PromptTemplate
from langchain.chains import LLMChain
# Initialize the Ollama LLM
llm = OllamaLLM(model="llama3.2:1b")
# Create a prompt template
prompt = PromptTemplate(
input_variables=["topic"],
template="Write a short paragraph about {topic}.",
)
# Create an LLMChain
chain = LLMChain(llm=llm, prompt=prompt)
Step 2: Configure Krypton ML
Create a configuration file for Krypton ML. Name it krypton_config.yaml
:
krypton:
server:
host: "0.0.0.0"
port: 8000
models:
- name: langchain-example
type: langchain
module_path: ./app
callable: langchain_model.chain
endpoint: langchain-example
description: "A simple Langchain text generation model"
tags:
- langchain
- text-generation
Make sure to replace ./app
with the actual folder path of your langchain_model.py
file.
Step 3: Run Krypton ML Server
Now, start the Krypton ML server with your configuration:
krypton krypton_config.yaml
Step 4: Test the Model
You can now test your Langchain model using a simple curl command or any API client:
curl -X POST http://localhost:8000/langchain-example \
-H "Content-Type: application/json" \
-d '{"topic": "artificial intelligence"}'
This should return a JSON response with a short paragraph about artificial intelligence.
Conclusion
You've successfully implemented and deployed a Langchain model using Krypton ML. This example demonstrates how easy it is to integrate Langchain models into your Krypton ML workflow. You can extend this example by adding more complex Langchain models or chains as needed.